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AGENDA
Multi-GPU Programming Models

Multi-GPU Programming with OpenACC and CUDA
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MULTI-GPU 
PROGRAMMING 

MODELS
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MULTI-GPU PROGRAMMING MODELS

Single Thread, Multiple GPUs 

• A single thread will change devices as-needed to send data and kernels to different GPUs

Multiple Threads, Multiple GPUs

• Using OpenMP, Pthreads, or similar, each thread can manage its own GPU

Multiple Ranks, Single GPU

• Each rank acts as-if there’s just 1 GPU, but multiple ranks per node use all GPUs

Multiple Ranks, Multiple GPUs

• Each rank manages multiple GPUs, multiple ranks/node. Gets complicated quickly!
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MULTI-GPU PROGRAMMING MODELS
Trade-offs Between Approaches

Single Thread, Multiple 
GPUs

Multiple Threads, Multiple 
GPUs

Multiple Ranks, Single GPU Multiple Ranks, Multiple 
GPUs

• Little to no code 

changes required

• Re-uses existing 

domain 

decomposition

• Probably already 

using MPI

• Watch affinity

• Conceptually Very 

Simple

• Set and forget the 

device numbers

• Relies on external 

Threading API 

• Can see improved 

utilization

• Watch affinity

• Conceptually 

Simple

• Requires 

additional  loops

• CPU can become a 

bottleneck

• Remaining CPU 

cores often 

underutilized

• Easily share data 

between peer 

devices

• Coordinating 

between GPUs 

extremely tricky
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MULTI-DEVICE CUDA

CUDA by default exposes all devices, 

numbered 0 – (N-1), if devices are not all the 

same, it will reorder the “best” to device 0.

Each device has its own pool of streams.

If you do nothing, all work will go to Device 

#0.

Developer must change the current device 

explicitly
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MULTI-DEVICE OPENACC

OpenACC presents devices numbered 0 – (N-1) 

for each device type available.

The order of the devices comes from the 

runtime, almost certainly the same as CUDA

By default all data and work go to the current 

device

Developers must change the current device 

and maybe the current device type using an 

API
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MULTI-DEVICE OPENMP

OpenMP devices numbered 0 – (N-1) for ALL

devices on the machine, including the host.

The order is determined by the runtime, but 

devices of the same type are contiguous.

To change the device for data and compute a 

clause is added to directives.

Device API routines include a devicenum
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MULTI-GPU 
PROGRAMMING WITH 
OPENACC AND CUDA
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MULTI-GPU W/ CUDA AND OPENACC

The CUDA and OpenACC approaches are sufficiently similar, that I will demonstrate using 

OpenACC. 

Decoder Ring:

OpenACC CUDA

acc_get_device_type() N/A

acc_set_device_type() N/A

acc_set_device_num() cudaSetDevice()

acc_get_device_num() cudaGetDevice()

acc_get_num_devices() cudaGetDeviceCount()
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Multi-Device Pipeline

We’ll use a simple image filter to demonstrate 
these techniques.

No inter-GPU communication required 

Pipelining: Breaking a large operation into 
smaller parts so that independent operations can 
overlap.

Since each part is independent, they can easily 
be run on different devices. We will extend the 
filter to run on more than one device.

A Case Study
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Pipelining in a Nutshell 

H2D kernel D2H H2D kernel D2H

H2D kernel D2H

H2D kernel D2H

Two Independent Operations Serialized

Overlapping Copying and Computation

NOTE: In real 

applications, 

your boxes will 

not be so evenly 

sized.

H2D kernel D2H

H2D kernel D2H
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Multi-device Pipelining in a Nutshell 
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Pipelined Code
#pragma acc data create(imgData[w*h*ch],out[w*h*ch]) 

copyin(filter)
{
for ( long blocky = 0; blocky < nblocks; blocky++)
{

long starty = MAX(0,blocky * blocksize - filtersize/2);
long endy = MIN(h,starty + blocksize + filtersize/2);

#pragma acc update device(imgData[starty*step:blocksize*step]) async(block%3)
starty = blocky * blocksize;
endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector async(block%3)
for (y=starty; y<endy; y++) for ( x=0; x<w; x++ ) {

<filter code ommitted>
out[y * step + x * ch]      = 255 - (scale * blue);
out[y * step + x * ch + 1 ] = 255 - (scale * green);
out[y * step + x * ch + 2 ] = 255 - (scale * red);

}
#pragma acc update self(out[starty*step:blocksize*step]) async(block%3)
}
#pragma acc wait
}

Cycle between 3 async

queues by blocks.
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Pipelined Code
#pragma acc data create(imgData[w*h*ch],out[w*h*ch]) 

copyin(filter)
{
for ( long blocky = 0; blocky < nblocks; blocky++)
{

long starty = MAX(0,blocky * blocksize - filtersize/2);
long endy = MIN(h,starty + blocksize + filtersize/2);

#pragma acc update device(imgData[starty*step:blocksize*step]) async(block%3)
starty = blocky * blocksize;
endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector async(block%3)
for (y=starty; y<endy; y++) for ( x=0; x<w; x++ ) {

<filter code ommitted>
out[y * step + x * ch]      = 255 - (scale * blue);
out[y * step + x * ch + 1 ] = 255 - (scale * green);
out[y * step + x * ch + 2 ] = 255 - (scale * red);

}
#pragma acc update self(out[starty*step:blocksize*step]) async(block%3)
}
#pragma acc wait
}

Cycle between 3 async

queues by blocks.

Wait for all blocks to 

complete.
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NVPROF Timeline of Pipeline
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Extending to multiple devices

Create 1 OpenMP thread on the CPU per-device. This is not strictly necessary, but 
simplifies the code.

Within each thread, set the device number.

Divide the blocks as evenly as possible among the CPU threads.
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Multi-GPU Pipelined Code 
(OpenMP)

#pragma omp parallel num_threads(acc_get_num_devices(acc_device_default))
{

acc_set_device_num(omp_get_thread_num(),acc_device_default);
int queue = 1;

#pragma acc data create(imgData[w*h*ch],out[w*h*ch])
{

#pragma omp for schedule(static)
for ( long blocky = 0; blocky < nblocks; blocky++) {

// For data copies we need to include the ghost zones for the filter
long starty = MAX(0,blocky * blocksize - filtersize/2);
long endy = MIN(h,starty + blocksize + filtersize/2);

#pragma acc update device(imgData[starty*step:(endy-starty)*step]) async(queue)
starty = blocky * blocksize;
endy = starty + blocksize;

#pragma acc parallel loop collapse(2) gang vector async(queue)
for ( long y = starty; y < endy; y++ ) { for ( long x = 0; x < w; x++ ) {

<filter code removed for space>
}}

#pragma acc update self(out[starty*step:blocksize*step]) async(queue)
queue = (queue%3)+1;

}
#pragma acc wait

}
}

Spawn 1 thread per 

device.

Set the device number 

per-thread.

Divide the work 

among threads.

Wait for each device 

in its thread.
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Multi-GPU Pipelined Performance
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OpenACC with MPI

Domain decomposition is performed using MPI ranks

Each rank should set its own device

• Maybe acc_set_device_num

• Maybe handled by environment variable (CUDA_VISIBLE_DEVICES)

GPU affinity can be handled by standard MPI task placement

Multiple MPI Ranks/GPU (using MPS) can work in place of OpenACC work 
queues/CUDA Streams
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Setting a device by local rank
// This is not portable to other MPI libraries
char *comm_local_rank = getenv("OMPI_COMM_WORLD_LOCAL_RANK");
int local_rank = atoi(comm_local_rank);
char *comm_local_size = getenv("OMPI_COMM_WORLD_LOCAL_SIZE");
int local_size = atoi(comm_local_size);
int num_devices = acc_get_num_devices(acc_device_nvidia);

#pragma acc set device_num(local_rank%num_devices) \
device_type(acc_device_nvidia)

You may also try using MPI_Comm_split_type() using 

MPI_COMM_TYPE_SHARED or OMPI_COMM_TYPE_SOCKET.

In the end, you need to understand how jsrun/mpirun is placing your 

ranks.

Determine a unique ID 

for each rank on the 

same node.

Use this unique ID to 

select a device per 

rank.
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MPI Image Filter (pseudocode)
if (rank == 0 ) read_image();
// Distribute the image to all ranks
MPI_Scatterv(image);

MPI_Barrier(); // Ensures all ranks line up for timing
omp_get_wtime(); 
blur_filter(); // Contains OpenACC filter
MPI_Barrier(); // Ensures all ranks complete before timing
omp_get_wtime(); 

MPI_Gatherv(out);
if (rank == 0 ) write_image();

$ jsrun –n 6 –a 1 –c 1 –g 1 ...

There’s a variety of ways to do MPI decomposition, this is what I used for 

this particular example.

Decompose image 

across processes 

(ranks)

Receive final parts 

from all ranks.

Launch with good 

GPU/process affinity
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Multi-GPU Pipelined Performance (MPI)

1.00X

1.53X

2.83X

4.89X

0.00X

1.00X

2.00X

3.00X

4.00X

5.00X

6.00X

7.00X

8.00X

9.00X

1 Device 2 Devices 4 Devices 8 Devices 16 Devices

S
p
e
e
d
-u

p
 f

ro
m

 o
n
e
 d

e
v
ic

e

Source: PGI 17.3, NVIDIA Tesla P100 (DGX-1), Communication Excluded

Crosses quad

boundary



26

Multi-GPU Pipelined Performance (MPI)
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MULTI-DEVICE CUDA

#pragma omp parallel

{

cudaSetDevice ( idx );

#pragma omp for

for ( int b=0; b < nblocks ; b++)

{

cudaMemcpyAsync (é, streams[b%3] );

blur_kernel <<<griddim , blockdim ,

0, streams[b%3] >>>();

cudaMemcpyAsync (é, streams[b%3] );

}

cudaDeviceSynchronize ();

}

MPI_Comm_rank( local_comm , & local_rank );

cudaSetDevice ( local_rank );

for ( int b=0; b < nblocks ; b++)

{

cudaMemcpyAsync (é, streams[b%3] );

blur_kernel <<<griddim , blockdim ,

0, streams[b%3] >>>();

cudaMemcpyAsync (é, streams[b%3] );

}

cudaDeviceSynchronize ();

Same Pattern, Different API
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MULTI-DEVICE OPENMP 4.5

#pragma omp parallel num_threads ( num_dev)

{

#pragma omp for

for ( int b=0; b < nblocks ; b++)

{

#pragma omp target update map(to:…) \

device(dev) depend( inout:A ) \

nowait

#pragma omp target teams distribute \

parallel for simd device(dev) \

depend( inout:A )

for(é) { é } 

#pragma omp target update map(from:…) \

device(dev) depend( inout:A ) \

nowait

}  

#pragma omp taskwait

}

MPI_Comm_rank( local_comm , & local_rank );

int dev = local_rank ;

for ( int b=0; b < nblocks ; b++)

{

#pragma omp target update map(to:…) \

device(dev) depend( inout:A ) \

nowait

#pragma omp target teams distribute \

parallel for simd device(dev) \

depend( inout:A )

for(é) { é } 

#pragma omp target update map(from:…) \

device(dev) depend( inout:A ) \

nowait

}  

#pragma omp taskwait

Same Pattern, Different API
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Multi-GPU Approaches

Single-Threaded, Multiple-GPUs – Requires additional loops to manage devices, 
likely undesirable.

Multi-Threaded, Multiple-GPUs – Very convenient set-and-forget the device. Could 
possibly conflict with existing threading.

Multiple-Ranks, Single-GPU each – Probably the simplest if you already have MPI, he 
decomposition is done. Must get your MPI placement correct

Multiple-Ranks, Multiple-GPUs – Can allow all GPUs to share common data 
structures. Only do this is you absolutely need to, difficult to get right. 

Choosing an approach
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CLOSING SUMMARY
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MULTI-GPU APPROACHES

Single-Threaded, Multiple-GPUs – Requires additional loops to manage devices, likely 
undesirable.

Multi-Threaded, Multiple-GPUs – Very convenient set-and-forget the device. Could possibly 
conflict with existing threading.

Multiple-Ranks, Single-GPU each – Probably the simplest if you already have MPI, he 
decomposition is done. Must get your MPI placement correct

Multiple-Ranks, Multiple-GPUs – Can allow all GPUs to share common data structures. Only do 
this is you absolutely need to, difficult to get right. 

Choosing an approach
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GPU TO GPU COMMUNICATION

CUDA aware MPI functionally portable

OpenACC/MP interoperable

Performance may vary between on/off node, socket, HW support for GPU Direct

WARNING: Unified memory support varies wildly between implementations!

Single-process, multi-GPU

Enable peer access for straight forward on-node transfers

Multi-process, single-gpu

Pass CUDA IPC handles for on-node copies

Combine for more flexibility/complexity!
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ESSENTIAL TOOLS AND TRICK

Pick on-node layout with OLCF jsrun visualizer

https://jsrunvisualizer.olcf.ornl.gov/index.html

Select MPI/GPU interaction with jsrun --smpiargs

“-gpu” for CUDA aware, “off” for pure GPU without MPI

Profile MPI and NVLinks with nvprof

Good performance will require experimentation!




